서울대병원, 관절염 환자의 근감소증 예측 알고리즘 개발
- 수술 전 하지 X-ray 및 피검사 결과 활용해 근감소증 여부 예측
- 인공관절치환술 합병증의 위험인자인 근감소증 선별에 활용할 수 있을 것으로 기대
무릎 인공관절 치환술 전 시행하는 검사인 하지 X-ray와 피검사만으로 환자의 ‘근감소증(sarcopenia)’을 정확히 예측할 수 있는 인공지능 모델이 세계 최초로 개발됐다.
서울대병원 정형외과 노두현 교수팀(황두현 수련의, 안성호 학생)은 인공지능인 합성곱 신경망과 기계학습의 분류 모델을 복합적으로 이용해 수술 전 하지 X-ray와 피검사 결과만으로 근감소증을 예측할 수 있는 알고리즘 모델을 개발했다고 5일 밝혔다.
근감소증은 노화에 따라 근육량이 줄어들고 근육 기능이 저하되는 질환이다. 이 질환은 낙상, 골절, 여러 수술 후 합병증의 대표적인 위험인자로 꼽힌다. 따라서 수술 전 선제적으로 근감소증 환자를 선별하고 치료를 제공하는 것이 중요하다.
반면 근육의 양으로 근감소증을 진단하는 경우 MRI 혹은 CT를 활용한다. 이 방법은 근육량 측정 정확도가 높은 장점이 있지만 시간이 오래 걸리거나 방사능 피폭, 관찰자에 따라 상이한 측정 결과 등의 한계가 있다.
[Figure1] (A)원본 방사선 이미지 (B)전문의가 표시한 분절된 근육 (C)인공지능 모델이 예측한 분절된 근육
[Figure2] 예측 모델 훈련과 테스트. 하지 X-ray 이미지는 전처리(자르기 및 크기 조정) 및 증강을 거쳐
합성곱 신경망에 공급되고 5겹 교차 검증을 통해 학습된다. 이후 최적화된
XGBoost 분류 모델(회귀 및 분류 문제를 해결하기 위해 사용하는 기계 학습 모델)을 사용해 환자의 예측
근육량(PMV)을 추정하고 환자를 근감소증 및 정상 그룹으로 분류한다.
연구 결과 개발된 딥 러닝 모델이 하지 X-ray 사진의 자동 근육 분할 측면에서 전문의가 표시한 것과 다름없는 높은 성능을 보이는 것을 알 수 있었다. 또한 근감소증 예측 모델의 검증 단계에서 해당 모델의 예측 능력(AUC: Area Under Curve)의 수치는 0.98로 우수한 성능을 보였다.
특히 근감소증을 예측하는 7개의 변수 중 PMV(예측 전신 근육량) 값은 근감소증을 판별하는 기능에서 가장 중요한 변수로 확인됐다.
[Figure3] 검증 단계에서의 인공지능 모델 예측 능력(AUC)
[Figure4] 근감소증 판별 기능에 사용되는 변수들의 중요도
[사진 왼쪽부터] 서울대병원 정형외과 노두현 교수, 황두현 수련의, 안성호 학생